ClaHi-GAT 谣言检测《Rumor Detection on Twitter with Claim-Guided Hierarchical Graph Attention Networks》( 二 )
${\large \begin{array}{l}b_{i} &=&\tanh \left(F C\left(h_{x_{i}}^{c}\right)\right) \\\beta_{i} &=&\frac{\exp \left(b_{i}\right)}{\sum_{i} \exp \left(b_{i}\right)} \\\hat{s} &&=\sum_{i} \beta_{i} h_{x_{i}}^{(L)}\end{array}} $
最后将其 $\hat{S}$ 与 GAT 最后一层的平均池化图表示 $\bar{s}$ 拼接作为最终图表示,并进行分类:
$\hat{y}=\operatorname{softmax}(F C([\hat{s} \| \bar{s}]))$
3 Experiments3.1 Datasets
文章插图
3.2 Rumor Classifification PerformanceTWITTER15 分类结果:
文章插图
PHEME 分类结果:
文章插图
3.3 Ablation Study1) ClaHi-GAT/DT: Instead of the undirected interaction graph, we use the directed trees as the model input.
2) GAT+EA+SC: We simply concatenate the features of the claim with the node features at each GAT layer, to replace the claim-aware representation.
3) w/o EA: We discard the event-level (inference-based) attention as presented.
4) w/o PA: We neglect the post-level (claim-aware) attention by leaving out the gating module introduced.
5) GAT: The backbone model.
6) GCN: The vanilla graph convolutional networks with no attention.
文章插图
3.4 Evaluation of Undirected Interaction Graphs
- ClaHi-GAT/DT Utilize the directional tree applied in past influential works as the modeling way instead of our proposed undirected interaction graph.
- ClaHi-GAT/DTS Based on the directional tree structure similar to ClaHi-GAT/DT but the explicit interactions between sibling nodes are taken into account.
- ClaHi-GAT/UD The modeling way is our undirected interaction topology but without considering the explicit correlations between sibling nodes that reply to the same target.
- ClaHi-GAT In this paper, we propose to model the conversation thread as an undirected interaction graph for our claim-guided hierarchical graph attention networks.
文章插图
3.5 Early Rumor Detection
文章插图
关键点:随着 claim 的传播 , 或多或少会产生更多的语义信息和噪声,所以使用 claim 的信息至关重要 。
举例说明:false claim 的注意力分数得分图如下:
文章插图
言下之意:错误的 post $x_2$ 会被赋予较小的权重,这就是为什么该模型早期谣言检测比较稳定的原因 。
【ClaHi-GAT 谣言检测《Rumor Detection on Twitter with Claim-Guided Hierarchical Graph Attention Networks》】
推荐阅读
- PLAN 谣言检测——《Interpretable Rumor Detection in Microblogs by Attending to User Interactions》
- 谣言检测——《Debunking Rumors on Twitter with Tree Transformer》
- 如何使用 Yolov4 训练人脸口罩检测模型
- 自身 如何在linux下检测IP冲突
- 华为watch3pro支持血糖检测吗_华为watch3pro有测血糖功能吗
- Notebook交互式完成目标检测任务
- PSA 谣言检测——《Probing Spurious Correlations in Popular Event-Based Rumor Detection Benchmarks》
- GACL 谣言检测《Rumor Detection on Social Media with Graph Adversarial Contrastive Learning》
- 怎样检测甲醛是否超标 怎么检测甲醛是否超标
- 桩基静载检测数量怎么确定 桩基静载检测要做桩帽吗?