RDEA 谣言检测《Rumor Detection on Social Media with Event Augmentations》( 二 )


2.3 Fine tuning预训练使用了文本特征,得到了预训练的 event representation,并包含了原始特征和 source post 信息 , 在 fine-tune 阶段,使用预训练的参数初始化参数 , 并使用标签训练模型:
将上述生成的 $s_{i}$ 通过全连接层进行分类:
$\hat{\mathbf{y}}_{i}=\operatorname{softmax}\left(F C\left(\mathbf{S}_{i}\right)\right)$
最后采用交叉熵损失:
$\mathcal{L}(Y, \hat{Y})=\sum_{i=1}^{|C|} \mathbf{y}_{i} \log \hat{\mathbf{y}}_{i}+\lambda\|\Theta\|_{2}^{2}$
其中,$\|\Theta\|_{2}^{2}$ 代表 $L_{2}$ 正则化,$\Theta$ 代表模型参数 , $\lambda$ 是 trade-off 系数 。
3 Experiments3.1 Baselines

    • DTC [3]: A rumor detection approach applying decision tree that utilizes tweet features to obtain information credibility.
    • SVM-TS [10]: A linear SVM-based time-series model that leverages handcrafted features to make predictions.
    • RvNN [11]: A recursive tree-structured model with GRU units that learn rumor representations via the tree structure.
    • PPC_RNN+CNN [8]: A rumor detection model combining RNN and CNN for early-stage rumor detection, which learns the rumor representations by modeling user and source tweets.
    • Bi-GCN [2]: using directed GCN, which learns the rumor representations through Bi-directional propagation structure.
3.2 Performance Comparison
RDEA 谣言检测《Rumor Detection on Social Media with Event Augmentations》

文章插图
3.3 Ablation study
RDEA 谣言检测《Rumor Detection on Social Media with Event Augmentations》

文章插图
-R represent our model without root feature enhancement-T represent our model without textual graph-A represent our model without event augmentation-M represent our model without mutual information
3.4 Limited labeled dataFigure 3 显示了当标签分数变化时的性能:
RDEA 谣言检测《Rumor Detection on Social Media with Event Augmentations》

文章插图
我们观察到,RDEA 对这两个数据集都比 Bi-GCN 更具有标签敏感性 。此外,标签越少 , 改进幅度越大,说明RDEA的鲁棒性和数据有效性 。
3.5 Early Rumor Detection
RDEA 谣言检测《Rumor Detection on Social Media with Event Augmentations》

文章插图
【RDEA 谣言检测《Rumor Detection on Social Media with Event Augmentations》】

推荐阅读