Linux下MMDetection环境配置

1. 准备工作

  1. Linux发行版 。
  • Pop!_OS 22.04 LTS (NVIDIA) (Ubuntu衍生)
  • 对Linux进行配置,更改国内镜像源 。
  1. 安装conda环境 。官网下载安装脚本(bash)文件 。执行
bash Miniconda3-latest-Linux-x86_64.sh
  1. 安装git工具 。
2. 安装步骤
  1. 配置conda虚拟环境
conda create -n openmmlab python=3.9 pytorch==1.11.0 cudatoolkit=11.3 torchvision -c pytorch -ytip: 可去pytorch官网查询最新版本 。
  1. 激活虚拟环境
conda activate openmmlab
  1. 安装openmim
pip install openmim
  1. 安装mmcv-full
pip install mmcv-full==1.5.3 -f https://download.openmmlab.com/mmcv/dist/cu113/torch1.11.0/index.html注意: MMDetection版本和MMCV版本存在兼容性问题 。具体可参考官网 。
  1. 克隆MMDetection项目
【Linux下MMDetection环境配置】git clone https://github.com/open-mmlab/mmdetection.git
  1. 切换到mmdetection目录下
cd mmdetection
  1. 安装依赖
pip install -r requirements/build.txt
  1. 执行
pip install -v -e .# "-v" means verbose, or more output# "-e" means installing a project in editable mode,# thus any local modifications made to the code will take effect without reinstallation.提醒: 到此MMDetection环境安装完成 。可到mmdetection/demo/inference_demo.ipynb进行执行验证 。验证前需要在openmmlab虚拟环境下安装ipykernel 。
pip install ipykernel3. 选装
  1. 安装Apex
  • APEX 是来自英伟达 (NVIDIA) 的一个很好用的深度学习加速库 。
  • 克隆Apex项目
git clone https://github.com/NVIDIA/apex
  • 安装Apex
cd apexpython setup.py install
  1. 安装mmpycocotools
pip uninstall pycocotoolspip install mmpycocotoolstip: 为后续训练coco数据集,需卸载pycocotools,安装mmpycocotools 。
4. 应用
  • Model Zoo 提供训练好的模型 。
  • 命令测试
python demo/image_demo.py demo/demo.jpg configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth

    推荐阅读