用户运营怎么做 岗位职责及策略分享?

活跃用户怎么精细化运营?用户分层和用户分群到底有啥区别?口号喊了千万遍,精细化何时能实现?”
新用户体验到产品的核心价值后会花费更多的时间和精力在产品上,逐渐成为产品的活跃用户,活跃用户是比较认可产品的价值、愿意为产品买单或背书的用户,他们不仅会贡献自己的价值,对于产品的品牌建设也非常关键,所以活跃用户运营的重要性不言而喻 。
活跃用户的运营是个很大的话题,今天只是尝试从一些特定的角度来探讨这个问题,虽然不能一次性把这个话题讲完讲透,但是希望能抛砖引玉,给大家一些思路和思考 。
01 何为精细化运营?过去市场更关注如何大规模、低成本获客,随着人口红利逐渐消失,获客成本越来越高,现在,越来越多的人关注如何提升单体用户价值,把钱花在刀刃上,让不同的用户享受到不同的服务,让用户感受到温度,让产品有灵魂 。
于是,“精细化运营”诞生了,提到用户运营,就逃不开“精细化”,它好像已经成为运营人的基本操守,跟别人交(chui)流(niu)的时候少了这些词汇都不好意思说你是搞运营的,但精细化运营到底是什么?又该怎么落地呢?
所谓精细化,第一个就是精准,第二个就是细分,两者相辅相成,缺一不可,想想要做到精准就要进行细分,胡子眉毛一把抓永远留不住用户,最理想的情况就是千人千面 。但是如何对用户进行细分呢?这里介绍两种很常用的方法:用户分层和用户分群 。
02 用户分层vs用户分群用户分层vs用户分群,看似差不多,但在定位和目标上还是有明显差异的 。用户分层,是基于大方向的划分,你希望用户朝什么核心目标努力,而用户分群,则是将他们划分为更细的粒度,便于针对性运营提高效果,两者相辅相成 。
用户分层中的层就是层次层级,比如我们把用户从注册开始使用产品成为我们的新用户开始,到成为活跃用户,再到频繁活跃或者是付费的忠诚用户,再到后期由于其他竞品的出现或者本身产品功能不再满足需求时用户开始沉默到最终流失;这一个生命周期也是一个层次,就像如图所示,那么有了这个分层,我们就可以比较清晰的知道当前用户的组成结构,各生命周期用户成长是否健康 。
那这样是不是就足够了呢,我们知道很多领域都存在着二八原则,即20%的人贡献了80%的营收,那么对于忠诚用户来说,这其中有部分是人均消费较低的平民群体,也有挥金如土的金主爸爸,对于这样的情况我们就要对忠诚用户在进行细化,分成更精细的组 。
再比如说,最近产品上新上了信用引导,想看看这个对于新用户留存是否有帮助,或者是开展了一场运营活动,看看核心指标有没有拉升,这个时候就需要对用户进行进一步细分,出现了分群;分群是对分层的进一步细分,分群后便于针对用户进行精准地运营动作 。
【用户运营怎么做 岗位职责及策略分享?】常用的用户分群的方法有我们熟悉的RFM、基于数据挖掘的Kmeans等等 。前者是用最近一次消费时间,消费频次和消费金额来衡量用户价值,将用户进行分群,分成高价值用户,一般价值用户,重要挽留用户等等,但是RFM模型的建立需要专家经验,也就是说指标的选择以及各指标阈值的确定都必须有业务sense,而不是拍脑袋决定的 。
Kmeans主要是通过数据挖掘的方式找出有相似特点的用户,实现物以类聚人以群分,用户进行过聚类后通过分析各组的特点也可以针对性地进行运营 。
03 用户分层应用案例下面我们通过一个案例将用户分层的理论落地,案例仅为便于说明问题而虚构 。首先我们假设活跃用户数的变化趋势如下图,乍一看每月的活跃用户数在持续增长,看似还不错 。
但是我们要警惕的是虚荣指标给我们的错觉,我们可以把累计的用户数放进来,也就是截止到当前的累计用户数,活跃用户数除以累计用户数得到用户的活跃度,表征的是活跃用户占整体的比例,这样一看发现好像比例在逐渐减小 。
我们可以继续细分,可以根据累计用户数计算出新增用户数,发现活跃用户中很大比例是新增的用户 。
相似地,我们可以把累计用户分为新用户和老用户,把活跃用户分为新活跃用户和老活跃用户,相似的,可以得到新老用户的活跃度,我们发现老用户的活跃度更低了 。
我们想要看老用户中到底是怎么了?我们把活跃用户再进行细分,分成活跃、不活跃用户2大类,活跃用户我们包括了新活跃用户和老用户活跃,然后老用户活跃我们又分成了一般活跃用户,忠诚用户和回流用户,不活跃用户主要包括沉默用户和流失用户 。

推荐阅读