刘徽创造的割圆术计算方法,只用圆内接多边形面积,而无需外切形面积,从而简化了计算程序 。同时,为解决圆周率问题,刘徽所运用的初步的极限概念和直曲转化思想,这在古代也是非常难能可贵的 。
在刘徽之后,南北朝时期杰出数学家祖冲之,把圆周率推算到更加精确的程度,取得了极其光辉的成就 。
刘徽是魏晋期间伟大的数学家,我国古典数学理论的奠基者之一 。他创造了许多数学方面的成就,其中在圆周率方面的贡献,同样源于他的潜心钻研 。
有一次,刘徽看到石匠在加工石头,觉得很有趣,就仔细观察了起来 。石匠一斧一斧地凿下去,一块方形石料就被加工成了一根光滑的圆柱 。
谁会想到,原本一块方石,经石匠师傅凿去4个角,就变成了八角形的石头 。再去8个角,又变成了十六边形 。这在一般人看来非常普通的事情,却触发了刘徽智慧的火花 。
他想:“石匠加工石料的方法,可不可以用在圆周率的研究上呢?”
于是,刘徽采用这个方法,把圆逐渐分割下去,一试果然有效 。刘徽独具慧眼,终于发明了“割圆术”,在世界上把圆周率计算精度提高到了一个新的水平 。
近代数学研究已经证明,圆周率是一个“超越数”概念,是一个不能用有限次加减乘除和开各次方等代数运算术出来的数据 。我国在两汉时期之前,一般采用的圆周率是“周三径一” 。很明显,这个数值非常粗糙,用它进行计算会造成很大的误差 。
随着生产和科学的发展,“周三径一”的估算越来越不能满足精确计算的要求,人们便开始探索比较精确的圆周率 。
虽然后来精确度有所提高,但大多却是经验性的结果,缺乏坚实的理论基础 。因此,研究计算圆周率的科学方法仍然是十分重要的工作 。
魏晋之际的杰出数学家刘徽,在计算圆周率方面,作出了非常突出的贡献 。
他在为古代数学名著《九章算术》作注的时候,指出“周三径一”不是圆周率值,而是圆内接正六边形周长和直径的比值 。而用古法计算出的圆面积的结果,不是圆面积,而是圆内接正十二边形面积 。
经过深入研究,刘徽发现圆内接正多边形边数无限增加的时候,多边形周长无限逼近圆周长,从而创立割圆术,为计算圆周率和圆面积建立起相当严密的理论和完善的算法 。
刘徽割圆术的基本思想是割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣 。
就是说分割越细,误差就越小,无限细分就能逐步接近圆周率的实际值 。他很清楚圆内接正多边形的边数越多,所求得的圆周率值越精确这一点 。
刘徽用割圆的方法,从圆内接正六边形开始算起,将边数一倍一倍地增加,即12、24、48、96,因而逐个算出六边形、十二边形、二十四边形等的边长,这些数值逐步地逼近圆周率 。
他做圆内接九十六边形时,求出的圆周率是3.14,这个结果已经比古率精确多了 。他算到了圆内接正三千零七十二边形,得到圆周率的近似值为3.1416 。
【中国古代遥遥领先的圆周率】刘徽利用“幂”和“差幂”来代替对圆的外切近似,巧妙地避开了对外切多边形的计算,在计算圆面积的过程中收到了事半功倍的效果 。
刘徽首创“割圆术”的方法,可以说他是我国古代极限思想的杰出代表,在数学史上占有十分重要的地位 。他所得到的结果在当时世界上也是很先进的 。
在刘徽之后,祖冲之所取得的圆周率数值可以说是圆周率计算的一个跃进 。
据《隋书·律历志》记载,祖冲之确定了圆周率的不足近似值是3.1415926,过剩近似值是3.1415927,真值在这两个近似值之间 。成为当时世界上最先进的成就 。
推荐阅读
- 中国出生人口大幅下降 为什么中国人口出生率急剧下降
- 印尼离中国哪个省最近 印尼靠近中国哪个地方
- 三军仪仗队属于哪个军种 中国人民解放军三军仪仗队是什么级别
- 中国人民银行100元金币是多少钱 中国人民银行100元金币值多少钱?
- 中国如何收养孤儿 过来了解一下
- 满100岁被称为什么在古代 满100岁被称为什么
- 控糖孕妇可以吃草莓吗 孕妇可以吃草莓吗
- 劳动铸就中国梦观后感
- 中国最东最西最南最北分别是那里
- 中国水流量最大的河流排名 中国流量最大的河流