日照中考数学考点梳理

基础数学的知识与运用是个人与团体生活中不可或缺的一部分 。其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见 。今天小编在这给大家整理了一些日照中考数学考点梳理,我们一起来看看吧!
日照中考数学考点梳理
1.在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆 。固定的端点O叫做圆心,线段OA叫做半径 。
2.连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径 。
3.圆上任意两点间的部分叫作圆弧,简称弧 。圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆 。能够重合的两个圆叫做等圆 。在同圆或等圆中,能够互相重合的弧叫做等弧 。
4.圆是轴对称图形,任何一条直径所在直线都是它的对称轴 。
5.垂直于弦的直径平分弦,并且平分弦所对的两条弧 。
6.平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 。

7.我们把顶点在圆心的角叫做圆心角 。
8.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等 。
9.在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等 。
10.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧相等 。
11.顶点在圆上,并且两边都与圆相交的角叫做圆周角 。
12.在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半 。
13.半圆(或半径)所对的圆周角是直角,90°的圆周角所对的弦是直径 。
14.如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆 。

15.在同圆或等圆中,如果两个圆周角相等,他们所对的弧一定相等 。
16.圆内接四边形的对角互补 。
17.点P在圆外——d>r点P在圆上——d=r点P在圆内——d
18.不在同一直线上的三个点确定一个圆 。
19.经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆,外接圆的圆心是三角形三条边垂直平分线的交点,叫做这个三角形的外心 。
20.直线和圆有两个公共点,这时我们说这条直线和圆相交,这条直线叫做圆的割线 。
中考数学考点梳理
1、圆是定点的距离等于定长的点的集合
2、圆的内部可以看作是圆心的距离小于半径的点的集合
3、圆的外部可以看作是圆心的距离大于半径的点的集合
4、同圆或等圆的半径相等

5、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
6、和已知线段两个端点的距离相等的点的轨迹,是这条线段的垂直平分线
7、到已知角的两边距离相等的点的轨迹,是这个角的平分线
8、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线
9、定理不在同一直线上的三点确定一个圆 。
10、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧
11、推论1:
①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 。
12、推论2:圆的两条平行弦所夹的弧相等
13、圆是以圆心为对称中心的中心对称图形
14、定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
15、推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
16、定理:一条弧所对的圆周角等于它所对的圆心角的一半
17、推论:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
18、推论:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径
19、推论:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
20、定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角
21、①直线L和⊙O相交d﹤r
②直线L和⊙O相切d=r
③直线L和⊙O相离d﹥r
22、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线
23、切线的性质定理:圆的切线垂直于经过切点的半径
24、推论:经过圆心且垂直于切线的直线必经过切点

推荐阅读