什么是必要非充分条件?


什么是必要非充分条件?

文章插图
必要不充分条件 , 如果有事物情况B , 则必然有事物情况A;如果有事物情况A不一定有事物情况B , A就是B的必要不充分条件 。
如果A能推出B , 那么A就是B的充分条件 。其中A为B的子集 , 即属于A的一定属于B , 而属于B的不一定属于A , 具体的说若存在元素属于B的不属于A , 则A为B的真子集;若属于B的也属于A , 则A与B相等 。
假设A是条件 , B是结论:
(1)由A可以推出B , 由B可以推出A , 则A是B的充要条件(A=B) 。
(2)由A可以推出B , 由B不可以推出A , 则A是B的充分不必要条件(A?≠B) 。
(3)由A不可以推出B , 由B可以推出A , 则A是B的必要不充分条件(B?≠A) 。
【什么是必要非充分条件?】(4)由A不可以推出B , 由B不可以推出A , 则A是B的既不充分也不必要条件(A?≠B且B?≠A) 。
区别:
充分不必要条件定义:如果有事物情况A , 则必然有事物情况B如果有事物情况B不一定有事物情况A , A就是B的充分而不必要的条件 , 即充分不必要条件 。
必要不充分条件定义:如果有事物情况A , 则必然有事物情况B 。如果有事物情况B不一定有事物情况A , A就是B的充分而不必要的条件 , 即充分不必要条件 。
充分不必要条件举例:天下雨了 , 地面一定湿 。 , 地面湿了并不一定能推出天下雨了 , 所以我们就说 , “天下雨是地面湿的充分不必要条件” 。
必要不充分条件举例:在必要条件中 , 前一个推不出后一个 , 后一个能推出前一个 , 我们可以说“地面湿了是天下雨的必要非充分条件 。”
扩展资料:
例子
已知P是R的充分不必要条件 , S是R的必要条件 , Q是S的必要条件 , 那么Q是P的什么条件?
解:由条件得P推出R , R推出S , S推出Q , 而R推不出P 。所以Q是P的必要不充分条件 。
总之:由条件能推出结论 , 但由结论推不出这个条件 , 这个条件就是充分条件
如果能由结论推出条件 , 但由条件推不出结论 。此条件为必要条件
如果既能由结论推出条件 , 又能有条件 推出结论 。此条件为充要条件
1、充分条件:由条件a推出条件b , 则a是b的充分条件
天下雨了 , 地面一定湿 。
2、必要条件:由条件a推出条件b , 则b是a的必要条件
我们把前面一个例子倒过来:地面湿了 , 天下雨了 。
3、充要条件:两个条件可以相互推导 。
例如:条件a他考试得了满分: 条件b他每道题都做对了
4、充分不必要条件 , 在充分条件举例中 , 地面湿了并不一定能推出天下雨了 , 所以我们就说 , “天下雨是地面湿的充分不必要条件”
5、必要不充分条件 , 在必要条件中 , 前一个推不出后一个 , 后一个能推出前一个 , 我们可以说“地面湿了是天下雨的必要非充分条件 。”
参考资料:百度百科-必要不充分条件
必要不充分条件 , 如果有事物情况B , 则必然有事物情况A;如果有事物情况A不一定有事物情况B , A就是B的必要不充分条件 。
如果A能推出B , 那么A就是B的充分条件 。其中A为B的子集 , 即属于A的一定属于B , 而属于B的不一定属于A , 具体的说若存在元素属于B的不属于A , 则A为B的真子集;若属于B的也属于A , 则A与B相等 。必要条件是充分条件的逆过程 。
例子
已知P是R的充分不必要条件 , S是R的必要条件 , Q是S的必要条件 , 那么Q是P的什么条件?
解:由条件得P推出R , R推出S , S推出Q , 而R推不出P 。所以Q是P的必要不充分条件 。
总之:由条件能推出结论 , 但由结论推不出这个条件 , 这个条件就是充分条件
如果能由结论推出条件 , 但由条件推不出结论 。此条件为必要条件
如果既能由结论推出条件 , 又能有条件 推出结论 。此条件为充要条件

推荐阅读