什么叫立方根


什么叫立方根

文章插图
 读作“三次根号a”其中,a叫做被开方数,3叫做根指数.(a可以等于0) 求一个数a的立方根的运算叫做开立方.所有实数有且只有一个立方根.立方根的性质 :(1)正数的立方根是正数.(2)负数的立方根是负数.(3)0...
如果一个数的立方等于a,那么这个数叫a的立方根,也称为三次方根 。也就是说,如果x3=a,那么x叫做a的立方根 。
注意:在平方根中的根指数2可省略不写,但立方根中的根指数3不能省略不写 。
概念
如果一个数的立方等于a,那么这个数叫a的立方根,也称为三次方根 。也就是说,如果,那么x叫做a的立方根 。[1]
( ),读作“三次根号a”,其中,a叫做被开方数,3叫做根指数 。
开立方:求一个数a的立方根的运算叫做开立方 。
性质
(1)在实数范围内,任何实数的立方根只有一个
(2)在实数范围内,负数不能开平方,但可以开立方 。
(3)0的立方根是0
【什么叫立方根】(4)立方和开立方运算,互为逆运算 。
(5)在复数范围内,任何非0的数都有且仅有3个立方根(一实根,二共轭虚根),它们均匀分布在以原点为圆心,算术根为半径的圆周上,三个立方根对应的点构成正三角形 。
(2)在复数范围内,负数既可以开平方,又可以开立方 。
大小比较
具有大小意义的数字大小比较中:
(1)做这两个数的立方,立方数大者大
(2)作差,两数相减,若差大于0,则被减数大;若差小于0,则减数大;若差等于0,则一样大;
(3)比较被开方数,立方根大者大
区别联系
平方根与立方根的联系与区别如下 。[1]
区别
(1)定义不同
平方根:如果一个数的平方等于 a,那么这个数就叫 a 的平方根或二次方根.即如果,那么 x 就叫 a 的平方根;立方根:如果一个数的立方等于 a,那么这个数叫做 a 的立方根或三次方根.即如果,那么 x 叫做 a 的立方根 。
(2)表示方法不同
平方根用“ ”表示,根指数 2 可以省略;算术平方根用“ ”表示,根指数 2 可以省略;立方根用“ ”表示,根指数 3 不能略去,更不能写成“ ”
(3)存在的条件不同
a 有平方根的条件:,因为正数、零、负数的平方都不是负数,故负数没有平方根和算术平方根;a 有立方根的条件:a 为全体实数,即正数、负数、零均可 。
(4)结果不同
平方根的结果除0之外,有两个互为相反的结果;立方根的结果有3个(除0以外,且在复数范围内),3个立方根均匀分布在以原点为圆心,算术根为半径的圆周上,三个立方根对应的点构成正三角形 。
联系
二者都是与乘方运算互为逆运算
三次方公式如下:
1、完全立方公式:
(a+b)^3=a^3+b^3+3ab^2+3a^2b
(a-b)^3=a^3-b^3+3ab^2-3a^2b
2、立方和公式:
a^3+b^3=(a+b)(a^2-ab+b^2)
a^3-b^3=(a-b)(a^2+ab+b^2)
三次方根性质
1、正数的立方根是正数,负数的立方根是负数,0的立方根是0 [2]。
2、在实数范围内,任何实数的立方根只有一个 。
3、在实数范围内,负数不能开平方,但可以开立方 。
4、立方与开立方运算,互为逆运算 。
5、在复数范围内,任何非0的数都有且仅有3个立方根(一实根,二共轭虚根),它们均匀分布在以原点为圆心,算术根为半径的圆周上,三个立方根对应的点构成正三角形 。
6、在复数范围内,负数既可以开平方,又可以开立方 。

    推荐阅读