一年级数学小知识大全 数学小知识大全高中( 五 )


第一章 集合与函数概念1.集合的概念及其表示意思;2.集合间的关系;3.函数的概念及其表示;4.函数性质(单调性、最值、奇偶性) 第二章 基本初等函数(I) 一.指数与对数1.根式;2.指数幂的扩充;3.对数;4.根式、指数式、对数式之间的关系;5.对数运算性质与指数运算性质 二.指数函数与对数函数1.指数函数与对数函数的图像与性质;2.指数函数y=ax的关系 三.幂函数 (定义、图像、性质) 第三章 函数的应用 一.方程的实数解与函数的零点 二.二分法 三.几类不同增长的函数模型 四.函数模型的应用 必修2知识点 一、直线与方程 (1)直线的倾斜角 定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角.特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度.因此,倾斜角的取值范围是0°≤α(2)直线的斜率 ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率.直线的斜率常用k表示.即.斜率反映直线与轴的倾斜程度.当时,; 当时,; 当时,不存在.②过两点的直线的斜率公式: 注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到.(3)直线方程 ①点斜式:直线斜率k,且过点 注意:当直线的斜率为0°时,k=0,直线的方程是y=y1.当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1.②斜截式:,直线斜率为k,直线在y轴上的截距为b ③两点式:()直线两点,④截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为.⑤一般式:(A,B不全为0) 注意:各式的适用范围 特殊的方程如:平行于x轴的直线:(b为常数); 平行于y轴的直线:(a为常数); (5)直线系方程:即具有某一共同性质的直线 (一)平行直线系 平行于已知直线(是不全为0的常数)的直线系:(C为常数) (二)垂直直线系 垂直于已知直线(是不全为0的常数)的直线系:(C为常数) (三)过定点的直线系 (ⅰ)斜率为k的直线系:,直线过定点;(ⅱ)过两条直线,的交点的直线系方程为 (为参数),其中直线不在直线系中.(6)两直线平行与垂直 当,时,;注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否.(7)两条直线的交点 相交 交点坐标即方程组的一组解.方程组无解 ; 方程组有无数解与重合 (8)两点间距离公式:设是平面直角坐标系中的两个点,则 (9)点到直线距离公式:一点到直线的距离 (10)两平行直线距离公式 在任一直线上任取一点,再转化为点到直线的距离进行求解.二、圆的方程1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.2、圆的方程 (1)标准方程,圆心,半径为r;(2)一般方程 当时,方程表示圆,此时圆心为,半径为 当时,表示一个点; 当时,方程不表示任何图形.(3)求圆方程的方法:一般都采用待定系数法:先设后求.确定一个圆需要三个独立条件,若利用圆的标准方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置.3、直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种情况:(1)设直线,圆,圆心到l的距离为,则有;;(2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)= r2 4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.设圆,。
高中数学科目包括以下内容必修部分:集合、函数、基本初等函数、立体几何初步、空间向量与立体几何、算法初步、常用逻辑用语、平面几何初步、圆锥曲线、三角函数、平面向量、解三角形、数列、不等式、推理与证明、导数及其应用、复数、计数原理、概率、随机变量及其分布、数学建模 。
选修部分:几何证明与选讲、矩阵与变换、坐标系与参数方程、不等式选讲 。扩展资料:数学中有许多概念都有着密切的联系,如平行线段与平行向量、平面角与空间角、方程与不等式、映射与函数、对立事件与互斥事件等等,在教学中应善于寻找、分析其联系与区别,有利于学生掌握概念的本质 。

推荐阅读