(8)数形结合法求函数的值域:利用函数所表示的几何意义,借助于几何方法或图象,求出函数的值域,即以数形结合求函数的值域.
人教版高二数学必修五知识点
84、数列前 项和与通项公式的关系:
( 数列 的前n项的和为 ).
85、等差、等比数列公式对比
等差数列等比数列
定义式
( )
通项公式及推广公式
中项公式若 成等差,则
若 成等比,则
运算性质若,则
若,则
前 项和公式
一个性质 成等差数列
成等比数列
86、解不等式
(1)、含有绝对值的不等式
当a > 0时,有 . [小于取中间]
或 .[大于取两边]
(2)、解一元二次不等式 的步骤:
①求判别式
②求一元二次方程的解: 两相异实根 一个实根 没有实根
③画二次函数 的图象
④结合图象写出解集
解集 R
解集
注: 解集为R 对 恒成立
(3)高次不等式:数轴标根法(奇穿偶回,大于取上,小于取下)
(4)分式不等式:先移项通分,化一边为0,再将除变乘,化为整式不等式,求解 。
如解分式不等式 :先移项 通分
再除变乘,解出 。
87、线性规划:
(1)一条直线将平面分为三部分(如图):
(2)不等式 表示直线
某一侧的平面区域,验证方法:取原点(0,0)代入不
等式,若不等式成立,则平面区域在原点所在的一侧 。假如
直线恰好经过原点,则取其它点来验证,例如取点(1,0) 。
(3)线性规划求最值问题:一般情况可以求出平面区域各个顶点的坐标,代入目标函数,的为值 。
高三数学第二章必修五知识点
一、函数的定义域的常用求法:
1、分式的分母不等于零;
2、偶次方根的被开方数大于等于零;
3、对数的真数大于零;
4、指数函数和对数函数的底数大于零且不等于1;
5、三角函数正切函数y=tanx中x≠kπ+π/2;
6、如果函数是由实际意义确定的解析式,应依据自变量的实际意义确定其取值范围 。
二、函数的解析式的常用求法:
【高中必修五数学知识点总结 高中必修五数学知识点】1、定义法;
2、换元法;
3、待定系数法;
4、函数方程法;
5、参数法;
6、配方法
三、函数的值域的常用求法:
1、换元法;
2、配方法;
3、判别式法;
4、几何法;
5、不等式法;
6、单调性法;
7、直接法
四、函数的最值的常用求法:
1、配方法;
2、换元法;
3、不等式法;
4、几何法;
5、单调性法
五、函数单调性的常用结论:
1、若f(x),g(x)均为某区间上的增(减)函数,则f(x)+g(x)在这个区间上也为增(减)函数 。
2、若f(x)为增(减)函数,则-f(x)为减(增)函数 。
3、若f(x)与g(x)的单调性相同,则f[g(x)]是增函数;若f(x)与g(x)的单调性不同,则f[g(x)]是减函数 。
4、奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反 。
5、常用函数的单调性解答:比较大小、求值域、求最值、解不等式、证不等式、作函数图象 。
六、函数奇偶性的常用结论:
1、如果一个奇函数在x=0处有定义,则f(0)=0,如果一个函数y=f(x)既是奇函数又是偶函数,则f(x)=0(反之不成立) 。
2、两个奇(偶)函数之和(差)为奇(偶)函数;之积(商)为偶函数 。
3、一个奇函数与一个偶函数的积(商)为奇函数 。
4、两个函数y=f(u)和u=g(x)复合而成的函数,只要其中有一个是偶函数,那么该复合函数就是偶函数;当两个函数都是奇函数时,该复合函数是奇函数 。
5、若函数f(x)的定义域关于原点对称,则f(x)可以表示为f(x)=1/2[f(x)+f(-x)]+1/2[f(x)+f(-x)],该式的特点是:右端为一个奇函数和一个偶函数的和 。
推荐阅读
- 高中数学等差数列和等比数列知识点 高中数学等比数列知识点总结
- 高中数学难点知识点全 高中数学重要难点知识点
- 高中数学必修一知识点归纳 高中数学必备的重要知识点归纳
- 高中数学必会的知识点导数中的同构与放缩 高中数学必会的知识点
- 数学必修二第一章知识点总结 必修二数学知识点总结
- 高中必修五数学知识点总结 高中数学必修五知识点归纳
- 五花肉的100种做法大全 五花肉的材料和做法步骤
- 最新 徐汇区高中转学条件 上海徐汇区转学政策2021年
- 上海徐汇区高中转学需要什么材料 上海市内高中转学
- 徐汇区高中转学怎么转 徐汇区高中转学怎么转的