高中数学中等比数列是必考之一 , 等比数列是高中数学的一个重要知识点也是一个难点 , 很多人在学完等差数列之后再学等比数列就更容易相互混淆了 。下面是小编为大家整理的关于高中数学等比数列知识点总结 , 希望对您有所帮助!
等比数列公式性质知识点
1.等比数列的有关概念
(1)定义:
如果一个数列从第2项起 , 每一项与它的前一项的比等于同一个常数(不为零) , 那么这个数列就叫做等比数列.这个常数叫做等比数列的公比 , 通常用字母q表示 , 定义的表达式为an+1/an=q(n∈N_ , q为非零常数).
(2)等比中项:
如果a、G、b成等比数列 , 那么G叫做a与b的等比中项.即:G是a与b的等比中项a , G , b成等比数列G2=ab.
2.等比数列的有关公式
(1)通项公式:an=a1qn-1.
3.等比数列{an}的常用性质
(1)在等比数列{an}中 , 若m+n=p+q=2r(m , n , p , q , r∈N_) , 则am·an=ap·aq=a.
特别地 , a1an=a2an-1=a3an-2=….
(2)在公比为q的等比数列{an}中 , 数列am , am+k , am+2k , am+3k , …仍是等比数列 , 公比为qk;数列Sm , S2m-Sm , S3m-S2m , …仍是等比数列(此时q≠-1);an=amqn-m.
4.等比数列的特征
(1)从等比数列的定义看 , 等比数列的任意项都是非零的' , 公比q也是非零常数.
(2)由an+1=qan , q≠0并不能立即断言{an}为等比数列 , 还要验证a1≠0.
5.等比数列的前n项和Sn
(1)等比数列的前n项和Sn是用错位相减法求得的 , 注意这种思想方法在数列求和中的运用.
(2)在运用等比数列的前n项和公式时 , 必须注意对q=1与q≠1分类讨论 , 防止因忽略q=1这一特殊情形导致解题失误.
等比数列知识点
1.等比中项
如果在a与b中间插入一个数G , 使a , G , b成等比数列 , 那么G叫做a与b的等比中项 。
有关系:
注:两个非零同号的实数的等比中项有两个 , 它们互为相反数 , 所以G2=ab是a,G,b三数成等比数列的必要不充分条件 。
2.等比数列通项公式
an=a1_q’(n-1)(其中首项是a1 , 公比是q)
an=Sn-S(n-1)(n≥2)
前n项和
当q≠1时 , 等比数列的前n项和的公式为
Sn=a1(1-q’n)/(1-q)=(a1-a1_q’n)/(1-q)(q≠1)
当q=1时 , 等比数列的前n项和的公式为
Sn=na1
3.等比数列前n项和与通项的关系
an=a1=s1(n=1)
an=sn-s(n-1)(n≥2)
4.等比数列性质
(1)若m、n、p、q∈N_ , 且m+n=p+q , 则am·an=ap·aq;
(2)在等比数列中 , 依次每k项之和仍成等比数列 。
(3)从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1 , k∈{1,2,… , n}
(4)等比中项:q、r、p成等比数列 , 则aq·ap=ar2 , ar则为ap , aq等比中项 。
记πn=a1·a2…an , 则有π2n-1=(an)2n-1 , π2n+1=(an+1)2n+1
【高中数学等差数列和等比数列知识点 高中数学等比数列知识点总结】另外 , 一个各项均为正数的等比数列各项取同底指数幂后构成一个等差数列;反之 , 以任一个正数C为底 , 用一个等差数列的各项做指数构造幂Can , 则是等比数列 。在这个意义下 , 我们说:一个正项等比数列与等差数列是“同构”的 。
(5)等比数列前n项之和Sn=a1(1-q’n)/(1-q)
(6)任意两项am , an的关系为an=am·q’(n-m)
(7)在等比数列中 , 首项a1与公比q都不为零 。
注意:上述公式中a’n表示a的n次方 。
等比数列知识点总结
等比数列:如果一个数列从第2项起 , 每一项与它的前一项的比等于同一个常数 , 这个数列就叫做等比数列 。这个常数叫做等比数列的公比 , 公比通常用字母q表示(q≠0) 。
1:等比数列通项公式:an=a1_q^(n-1); 推广式: an=am·q^(n-m);
2: 等比数列求和公式:等比求和:Sn=a1+a2+a3+.......+an
①当q≠1时 , Sn=a1(1-q^n)/(1-q)或Sn=(a1-an×q)÷(1-q)
②当q=1时 , Sn=n×a1(q=1) 记πn=a1·a2…an , 则有π2n-1=(an)2n-1 , π2n+1=(an+1)2n+1
推荐阅读
- 高中数学难点知识点全 高中数学重要难点知识点
- 高中数学必修一知识点归纳 高中数学必备的重要知识点归纳
- 高中数学必会的知识点导数中的同构与放缩 高中数学必会的知识点
- 数学必修二第一章知识点总结 必修二数学知识点总结
- 高中必修五数学知识点总结 高中数学必修五知识点归纳
- 高二数学 知识点整理 高二数学重要知识点整理梳理考点分布
- 高二数学人教版第一章知识点总结 人教版高二数学知识点总结储备
- 高二数学 知识点整理 高二数学重要知识点整理分析
- 高二数学重点知识点归纳 高二数学重要材料知识点归纳解读
- 2021高二数学知识点归纳 2021高二数学知识点