性质
对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:
首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞) 。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:
排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;
排除了为0这种可能,即对于x<0和x>0的所有实数,q不能是偶数;
排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数 。
指数函数
指数函数
(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑 。
(2)指数函数的值域为大于0的实数集合 。
(3)函数图形都是下凹的 。
(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的 。
(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置 。其中水平直线y=1是从递减到递增的一个过渡位置 。
(6)函数总是在某一个方向上无限趋向于X轴,永不相交 。
(7)函数总是通过(0,1)这点 。
(8)显然指数函数无界 。
奇偶性
定义
一般地,对于函数f(x)
(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数 。
(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数 。
(3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数 。
(4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数 。
推荐阅读
- 关于初中数学反思的课题 关于初中数学反思
- 三年级数学上册教案人教版电子版 三年级数学上册人教版教案及教学反思文案
- 三年级下册数学教学总结人教版 最新三年级下册数学教学总结
- 小学三年级下册数学教学总结 小学三年级数学教学总结5篇
- 小学数学教学反思总结范文(12篇 数学教学反思分析总结范文)
- 小学数学教学反思总结范文(12篇 小学数学教学反思总结)
- 初中数学代数知识点总结人教版 初中数学代数知识点总结
- 初中数学所有知识点总结(最全整理 初中数学所有知识点总结)
- 人教版初中数学知识点总结归纳 初中数学总结归纳知识点
- 高一数学教案对数函数说课5篇