反函数的三个性质是什么 反函数性质是什么


一般来说,设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作x=f-1(y) 。反函数x=f-1(y)的定义域、值域分别是函数y=f(x)的值域、定义域 。最具有代表性的反函数就是对数函数与指数函数 。
1、函数存在反函数的充要条件是,函数的定义域与值域是一一映射 。
2、一个函数与它的反函数在相应区间上单调性一致 。
3、大部分偶函数不存在反函数(当函数y=f(x),定义域是{0}且f(x)=C(其中C是常数),则函数f(x)是偶函数且有反函数,其反函数的定义域是{C},值域为{0}) 。奇函数不一定存在反函数,被与y轴垂直的直线截时能过2个及以上点即没有反函数 。


【反函数的三个性质是什么 反函数性质是什么】

    推荐阅读