2021高二数学知识点归纳 2021高二数学知识点

学习从来无捷径 。每一门科目都有自己的学习方法,但其实都是万变不离其中的,数学其实和语文英语一样,也是要记、要背、要练的 。下面是小编给大家整理的一些高二数学的知识点,希望对大家有所帮助 。
高二年级数学必修二知识点总结
直线的倾斜角:
定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角 。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度 。因此,倾斜角的取值范围是0°≤α<180°
直线的斜率:
①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率 。直线的斜率常用k表示 。即 。斜率反映直线与轴的倾斜程度 。
②过两点的直线的斜率公式 。
注意:
(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;

(2)k与P1、P2的顺序无关;
(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;
(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到 。
直线方程:
1.点斜式:y-y0=k(x-x0)
(x0,y0)是直线所通过的已知点的坐标,k是直线的已知斜率 。x是自变量,直线上任意一点的横坐标;y是因变量,直线上任意一点的纵坐标 。
2.斜截式:y=kx+b
直线的斜截式方程:y=kx+b,其中k是直线的斜率,b是直线在y轴上的截距 。该方程叫做直线的斜截式方程,简称斜截式 。此斜截式类似于一次函数的表达式 。

3.两点式;(y-y1)/(y2-y1)=(x-x1)/(x2-x1)
如果x1=x2,y1=y2,那么两点就重合了,相当于只有一个已知点了,这样不能确定一条直线 。
如果x1=x2,y1y2,那么此直线就是垂直于X轴的一条直线,其方程为x=x1,不能表示成上面的一般式 。
如果x1x2,但y1=y2,那么此直线就是垂直于Y轴的一条直线,其方程为y=y1,也不能表示成上面的一般式 。
4.截距式x/a+y/b=1
对x的截距就是y=0时,x的值,对y的截距就是x=0时,y的值 。x截距为a,y截距b,截距式就是:x/a+y/b=1下面由斜截式方程推导y=kx+b,-kx=b-y令x=0求出y=b,令y=0求出x=-b/k所以截距a=-b/k,b=b带入得x/a+y/b=x/(-b/k)+y/b=-kx/b+y/b=(b-y)/b+y/b=b/b=1 。
5.一般式;Ax+By+C=0
将ax+by+c=0变换可得y=-x/b-c/b(b不为零),其中-x/b=k(斜率),c/b=‘b’(截距) 。ax+by+c=0在解析几何中更常用,用方程处理起来比较方便 。
高二数学重点知识点梳理
函数的性质:
函数的单调性、奇偶性、周期性

单调性:定义:注意定义是相对与某个具体的区间而言 。
判定方法有:定义法(作差比较和作商比较)
导数法(适用于多项式函数)
复合函数法和图像法 。
应用:比较大小,证明不等式,解不等式 。
奇偶性:定义:注意区间是否关于原点对称,比较f(x)与f(-x)的关系 。f(x)-f(-x)=0f(x)=f(-x)f(x)为偶函数;
f(x)+f(-x)=0f(x)=-f(-x)f(x)为奇函数 。
判别方法:定义法,图像法,复合函数法
应用:把函数值进行转化求解 。
周期性:定义:若函数f(x)对定义域内的任意x满足:f(x+T)=f(x),则T为函数f(x)的周期 。
其他:若函数f(x)对定义域内的任意x满足:f(x+a)=f(x-a),则2a为函数f(x)的周期.
应用:求函数值和某个区间上的函数解析式 。
高二上册数学知识点总结
圆与圆的位置关系
1、利用平面直角坐标系解决直线与圆的位置关系;
2、过程与方法
用坐标法解决几何问题的步骤:
第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题;
第二步:通过代数运算,解决代数问题;
【2021高二数学知识点归纳 2021高二数学知识点】第三步:将代数运算结果“翻译”成几何结论.


    推荐阅读