人教版高二数学下学期知识点 人教版高二数学知识点解析全总结

在学习新知识的同时还要复习以前的旧知识 , 肯定会累 , 所以要注意劳逸结合 。只有充沛的精力才能迎接新的挑战 , 才会有事半功倍的学习 。以下是小编整理的有关高考考生必看的知识点的梳理 , 希望对您有所帮助 , 望各位考生能够喜欢 。
人教版高二数学知识点解析1
1.在中学我们只研直圆柱、直圆锥和直圆台 。所以对圆柱、圆锥、圆台的旋转定义、实际上是直圆柱、直圆锥、直圆台的定义 。
这样定义直观形象 , 便于理解 , 而且对它们的性质也易推导 。
对于球的定义中 , 要注意区分球和球面的概念 , 球是实心的 。
等边圆柱和等边圆锥是特殊圆柱和圆锥 , 它是由其轴截面来定义的 , 在实践中运用较广 , 要注意与一般圆柱、圆锥的区分 。
2.圆柱、圆锥、圆和球的性质
(1)圆柱的性质 , 要强调两点:一是连心线垂直圆柱的底面;二是三个截面的性质——平行于底面的截面是与底面全等的圆;轴截面是一个以上、下底面圆的直径和母线所组成的矩形;平行于轴线的截面是一个以上、下底的圆的弦和母线组成的矩形 。

(2)圆锥的性质 , 要强调三点
①平行于底面的截面圆的性质:
截面圆面积和底面圆面积的比等于从顶点到截面和从顶点到底面距离的平方比 。
②过圆锥的顶点 , 且与其底面相交的截面是一个由两条母线和底面圆的弦组成的等腰三角形 , 其面积为:
易知 , 截面三角形的顶角不大于轴截面的顶角(如图10-20) , 事实上 , 由BC≥AB , VC=VB=VA可得∠AVB≤BVC.
由于截面三角形的顶角不大于轴截面的顶角 。
所以 , 当轴截面的顶角θ≤90° , 有0°<α≤θ≤90° , 即有
当轴截面的顶角θ>90°时 , 轴截面的面积却不是的 , 这是因为 , 若90°≤α<θ<180°时 , 1≥sinα>sinθ>0.

③圆锥的母线l , 高h和底面圆的半径组成一个直径三角形 , 圆锥的有关计算问题 , 一般都要归结为解这个直角三角形 , 特别是关系式
l2=h2+R2
(3)圆台的性质 , 都是从“圆台为截头圆锥”这个事实推得的,高考 , 但仍要强调下面几点:
①圆台的母线共点 , 所以任两条母线确定的截面为一等腰梯形 , 但是 , 与上、下底面都相交的截面不一定是梯形 , 更不一定是等腰梯形 。
②平行于底面的截面若将圆台的高分成距上、下两底为两段的截面面积为S , 则
其中S1和S2分别为上、下底面面积 。
的截面性质的推广 。
③圆台的母线l , 高h和上、下两底圆的半径r、R , 组成一个直角梯形 , 且有
l2=h2+(R-r)2
圆台的有关计算问题 , 常归结为解这个直角梯形 。
(4)球的性质 , 着重掌握其截面的性质 。

①用任意平面截球所得的截面是一个圆面 , 球心和截面圆圆心的连线与这个截面垂直 。
②如果用R和r分别表示球的半径和截面圆的半径 , d表示球心到截面的距离 , 则
R2=r2+d2
即 , 球的半径 , 截面圆的半径 , 和球心到截面的距离组成一个直角三角形 , 有关球的计算问题 , 常归结为解这个直角三角形 。
3.圆柱、圆锥、圆台和球的表面积
(1)圆柱、圆锥、圆台和多面体一样都是可以平面展开的 。
①圆柱、圆锥、圆台的侧面展开图 , 是求其侧面积的基本依据 。
圆柱的侧面展开图 , 是由底面图的周长和母线长组成的一个矩形 。
②圆锥和侧面展开图是一个由两条母线长和底面圆的周长组成的扇形 , 其扇形的圆心角为
③圆台的侧面展开图是一个由两条母线长和上、下底面周长组成的扇环 , 其扇环的圆心角为
这个公式有利于空间几何体和其侧面展开图的互化
显然 , 当r=0时 , 这个公式就是圆锥侧面展开图扇形的圆心角公式 , 所以 , 圆锥侧面展开图扇形的圆心角公式是圆台相关角的特例 。
(2)圆柱、圆锥和圆台的侧面公式为
S侧=π(r+R)l
当r=R时 , S侧=2πRl , 即圆柱的侧面积公式 。

推荐阅读