DUCK 谣言检测《DUCK: Rumour Detection on Social Media by Modelling User and Comment Propagation Networks》( 三 )
$h_{p}=\operatorname{BERT}\left(\operatorname{emb}\left([C L S], c_{p}\right)\right)$
其中,$h$ 将用作 GAT 中的初始节点表示($h^{(0)}$) 。这里报告了这个替代模型(“unpaired”)及不同的聚合方法(“root”、“?root”、“$\bigtriangleup $” 和 “all”)的性能 。
文章插图
Comparing the aggregation methods, "all" performs the best, followed by "$\boldsymbol{\Delta}$ " and "root" (0.88 vs . 0.87 vs. 0.86 in Twitter16; 0.87 vs. 0.86 vs. 0.85 in CoAID in terms of Macro-F1). We can see that the root and its immediate neighbours contain most of the information, and not including the root node impacts the performance severely (both Twitter16 and CoAID drops to 0.80 with $\neg$ root).
Does processing the parent-child posts together with BERT help? The answer is evidently yes, as we see a substantial drop in performance when we process the posts independently: "unpaired" produces a macro-F1 of only 0.83 in both Twitter16 and CoAID. Given these results, our full model (DUCK) will be using "all"' as the aggregation method for computing the comment graph representation.
4.2.2 Comment ChainFig. 3 绘制了我们改变所包含的评论数量来回答 Q2 的结果:
文章插图
4.2.3 User Tree
文章插图
4.2.4 Overall Rumour Detection Performance
文章插图
【DUCK 谣言检测《DUCK: Rumour Detection on Social Media by Modelling User and Comment Propagation Networks》】
推荐阅读
- RDEA 谣言检测《Rumor Detection on Social Media with Event Augmentations》
- 谣言检测《Data Fusion Oriented Graph Convolution Network Model for Rumor Detection》
- ClaHi-GAT 谣言检测《Rumor Detection on Twitter with Claim-Guided Hierarchical Graph Attention Networks》
- PLAN 谣言检测——《Interpretable Rumor Detection in Microblogs by Attending to User Interactions》
- 谣言检测——《Debunking Rumors on Twitter with Tree Transformer》
- 如何使用 Yolov4 训练人脸口罩检测模型
- 自身 如何在linux下检测IP冲突
- 华为watch3pro支持血糖检测吗_华为watch3pro有测血糖功能吗
- Notebook交互式完成目标检测任务
- PSA 谣言检测——《Probing Spurious Correlations in Popular Event-Based Rumor Detection Benchmarks》