马踏棋盘1.算法优化的意义
- 算法是程序的灵魂,为什么有些程序可以在海量数据计算时,依旧保持高速计算?
- 编程中算法很多,比如八大排序算法(冒泡、选择、插入、快排、归并、希尔、基数、堆排序)、查找算法、分治算法、动态规划算法、KMP算法、贪心算法、普利姆算法、克鲁斯卡尔算法、迪杰斯特拉算法、弗洛伊德算法
- 下面以骑士周游问题为例,体验算法优化程序的意义,感受算法的威力
- 马踏棋盘算法介绍和游戏演示
- 马踏棋盘算法也被称为骑士周游问题
- 将马随机放在国际象棋的8*8棋盘Board[0-7][0-7]的某个方格中,马按走棋规则移动(马只能走日字) 。要求每个方格只进入一次,走遍棋盘上全部64个方格
- 会使用到图的遍历算法(DFS)+贪心算法优化
文章插图
【day53-马踏棋盘】马踏棋盘(骑士周游问题)实际上是图的深度优先搜索(DFS)的应用 。
使用回溯(就是深度优先搜索)来解决,假如马儿踏了53个点 , 如图,走到了第53个,坐标为(1,0),发现已经走到了尽头 , 没办法,那就只能回退了,查看其它的路径,就在棋盘上不停地回溯……
这里我们先用基本的方法解决 , 然后使用贪心算法(greedyalgorithm)进行优化 。解决马踏棋盘问题,体会到不同的算法对程序效率的影响
3.思路分析
文章插图
- 创建一个棋盘chessBoard,是一个二维数组
- 将马儿当前位置设置为已经访问 , 然后根据当前位置,计算马儿还能走哪些位置,并放入到一个集合中(ArrayList) , 每一个位置的下一步最多有8个方向,每走一步 , 就使用step+1
- 遍历ArrayList中存放的所有位置,看看哪个可以走,如果可以走通,就继续,走不通,就回溯
- 判断马儿是否完成了任务,使用step和应该走的步数比较,如果没有达到数量,则表示没有完成任务,将整个棋盘设置为0
package li;import java.awt.*;import java.util.ArrayList;/** * @author 李 * @version 1.0 * 马踏棋盘 */public class HorseChessBoard {//定义属性private static int X = 6;//表示col-列private static int Y = 6;//表示row-行private static int[][] chessBoard = new int[Y][X];//棋盘private static boolean[] visited = new boolean[X * Y];//表示记录某个位置是否走过private static boolean finished = false;//记录马儿是否遍历完棋盘public static void main(String[] args) {//测试int row = 2;int col = 2;long start = System.currentTimeMillis();traversalChessBoard(chessBoard, row-1, col-1, 1);//将棋盘上开始的位置设置为起始第一步long end = System.currentTimeMillis();System.out.println("遍历耗时="+(end - start));//输出当前棋盘的情况for (int[] rows : chessBoard) {for (int step : rows) {//step表示 这个位置是马儿应该走的第几步System.out.print(step + "\t");}System.out.println();}}//最核心的算法,遍历棋盘,如果遍历成功,就将finished的值设置为true,//并且将马儿走的每一步step记录到chessBoardpublic static void traversalChessBoard(int[][] chessBoard, int row, int col, int step) {//先将step记录到chessBoardchessBoard[row][col] = step;//把这个位置设置为已经访问visited[row * X + col] = true;//就是将二维数组的下标对应到一位数组下标,按行的顺序存放(注意下标从0开始)//获取当前位置可以走的下一个位置有哪些ArrayList<Point> ps = next(new Point(col, row));//注意col-X,row-Y//遍历while (!ps.isEmpty()) {//取出当前ps集合的第一个位置(点)Point p = ps.remove(0);//每取出一个点,就从集合中删除这个点//判断该点的位置是否走过,如果没有走过 , 就递归遍历if (!visited[p.y * X + p.x]) {//递归遍历traversalChessBoard(chessBoard, p.y, p.x, step + 1);}}//当退出while循环后,看看是否遍历成功,如果没有成功,就重置相应的值,然后进行回溯if (step < X * Y && !finished) {//重置chessBoard[row][col] = 0;visited[row * X + col] = false;} else {finished = true;}}//编写方法,可以获取当前位置 可以走的下一步 的所有位置(Point表示x,y)public static ArrayList<Point> next(Point curPoint) {//curPoint表示当前点//先创建一个ArrayListArrayList<Point> ps = new ArrayList<>();//创建一个Point对象,表示一个位置/点,准备放入到 ps集合中Point p1 = new Point();//判断在curPoint位置 , 是否可以走如下位置,如果可以走 , 就将该点(p1)放入到集合ps中/*** 马走日的话 , 每个点就有八个方向可以走,并且这八个方向对于当前坐标的相对坐标都是固定的,* 通过当前坐标算出八个方向的相对坐标,然后排除掉那些可能会走出界的方向*///判断是否可以走5位置if ((p1.x = curPoint.x - 2) >= 0 && (p1.y = curPoint.y - 1) >= 0) {ps.add(new Point(p1));//要创建一个新的点}//判断是否可以走6位置if ((p1.x = curPoint.x - 1) >= 0 && (p1.y = curPoint.y - 2) >= 0) {ps.add(new Point(p1));//要创建一个新的点}//判断是否可以走7位置if ((p1.x = curPoint.x + 1) < X && (p1.y = curPoint.y - 2) >= 0) {//注意索引的范围是:0到X-1ps.add(new Point(p1));//要创建一个新的点}//判断是否可以走0位置if ((p1.x = curPoint.x + 2) < X && (p1.y = curPoint.y - 1) >= 0) {ps.add(new Point(p1));//要创建一个新的点}//判断是否可以走1位置if ((p1.x = curPoint.x + 2) < X && (p1.y = curPoint.y + 1) < Y) {ps.add(new Point(p1));//要创建一个新的点}//判断是否可以走2位置if ((p1.x = curPoint.x + 1) < X && (p1.y = curPoint.y + 2) < Y) {ps.add(new Point(p1));//要创建一个新的点}//判断是否可以走3位置if ((p1.x = curPoint.x - 1) >= 0 && (p1.y = curPoint.y + 2) < Y) {ps.add(new Point(p1));//要创建一个新的点}//判断是否可以走4位置if ((p1.x = curPoint.x - 2) >= 0 && (p1.y = curPoint.y + 1) < Y) {ps.add(new Point(p1));//要创建一个新的点}return ps;}}
推荐阅读
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- 马踏飞燕说法为什么不对呢 马踏飞燕说法为什么不对
- 什么马没有腿也能走
- 棋盘格发糕的做法 棋盘格图片
- 中国有几个棋盘山
- 棋盘山在哪什么地方
- 棋盘山属于哪里
- 棋盘山在哪个省
- 棋盘山是哪个城市
- 马踏飞燕是什么时期的作品 马踏飞燕是什么时期的一件文物
- 象棋有几个交叉点 围棋棋盘共有几个交叉点