由学生小结,得出直线的两种表示方法:
(1)用直线上的两个大写字母表示.如图:记作直线 .
(2)用一个小写字母表示.如图:记作直线 .
【教法说明】用字母表示图形,小学没有介绍,现在学生初步接触,所以教师这里要补充说明点的表示方法.同时指出:以后学习中,常用字母表示几何图形,便于说明与研究.
3.点和直线的位置
找一个学生在黑板上画一直线,另一个学生在黑板上找一点.然后,引导全体学生讨论:平面上一条直线和一个点会有几种位置关系呢?
师生共同总结:
(1) 点在直线上,如图,叙述方法:点 在直线 上,或直线 经过点 .
(2) 点在直线外,如图,叙述方法:点 在直线 外,或直线 不经过点 .
【教法说明】在点和直线的位置关系中,要注意几何语言的训练.点在直线上和点在直线外,各有两种不同的叙述方法,要反复练习,以培养他们几何语言的表达能力.
4.直线的公理
实验尝试:用一个铁钉把木条钉在小黑板上,让学生转动木条,并观察现象.教师在木条上加上一个钉子,再让学生转动,并观察现象.
提出问题:以上实验你认为说明了什么道理?
学生活动:学生分组讨论,相互纠正或补充.
师小结:经过一点有无数条直线,经过两点有一条直线,并且只有一条直线.同时板书公理内容.
[板书]公理:经过两点有一条直线,并且只有一条直线.简言之,过两点有且只有一条直线.
体验证实:教师小结后让学生在练习本上分别经过一点和两点画直线.
【教法说明】(1)学生通过实验,对直线公理有认识,但欲言之而不能,或虽能表达出意思但不严密.此时离不开教师的引导,教师一定要强调几何语言的严密性和准确性.向学生们讲清“有且只有”的两层含义.第一个“有”说明的是存在性,过两点有直线存在.“只有”说明的是惟一性,经过两点的直线不会多,只有一条.如果把直线公理说成是:“经过两点有一条直线”就是错误的.了.(2)公理得出后,让学生再次动手验证,使学生体会到公理的科学性,培养学生对待事物的科学态度,也便于学生对公理的记忆.(3)通过教师指导下的实验活动,激发了学生的学习兴趣,培养了学生勇于探索的精神,提高独立分析问题解决问题的能力.
解决问题:通过学生间的相互讨论、教师补充等手段,使学生了解直线公理的应用,如:木匠怎样在木料上画线;植树时怎样能使树坑排列整齐等等
【教法说明】通过公理在日常生活中的应用举例,使学生明白科学来源于生活并服务于生活的道理.只有现在好好学习,积累本领,长大后才能更好地报效祖国.并体会从实践到理论,再回到实践的认识过程.
5.相交线
师:根据直线公理,过两点有几条直线?
(学生会答出:有且只有一条.)
师:反过来,两条不同的直线可能同时经过两个点吗?
(学生容易答出:不能)
师:两条不同的直线不可能同时过两个点,也就是说,两条不同的直线不能有两个公共点,当然,也不能有更多的公共点.因此,我们得出一个新概念;
[板书]如果两条直线有一个交点,我们叫这两条直线相交.这个公共点叫做它们的交点,这两条直线叫相交直线.
如图,直线 和直线 相交于点,点 是直线 和直线 的交点.
【教法说明】两直线相交为什么只有一个交点,是本节课的难点.从 公理入手提出问题,再反过来考虑,这种逆向思维的方法使学生易于理解,突破难点,问题得以解决.
反馈练习
(出示投影1)
1.问答题
(1)经过一点能否画直线?能画几条?
(2)经过两点能否画直线?能画几条?
(3)只用直线上的一个点来表示直线是否可以?用直线上的两个点表示直线呢?
2.读出下列语句,并按照这些语句画图
(1)直线 经过点 .
(2)点 在直线 外.
(3)经过 点的三条直线.
(4)直线 与 相交于点 .
(5)直线 经过 、 、 三点,点 在点 与点 之间.
(6) 是直线 外一点,过 点有一直线 与直线 相交于点 .
【教法说明】问答题的目的是进一步理解巩固直线公理,作图的目的是训练学生的 “言”与“图”的转化能力.
(四)总结、扩展
以提问的形式,归纳出以下知识点:
八、布置作业
预习下节内容
补充:按照下面的图形说出几何语句.
(1) (2)
(3) (4)
(5)
附答案
补充:(1)直线 过 ( 点在直线 上).
(2)点 在直线 外(直线 不过 点).
推荐阅读
- 手机短信发不出去是什么原因 主要原因是这些
- 乐心手环5和荣耀手环4
- 拍手有啥好处啊 拍手可以带来什么影响
- 适合女生用的手机
- 适合学生用的百元手机
- 手工糖画用什么锅好 画糖画如何不粘锅
- 手机版电子狗软件哪个最准 手机版电子狗哪个最准
- CF手游葵的灵魂武者声音怎么和保卫者一样? 你知道为什么声音是一样的吗
- 想卖车手续丢了怎么办 卖车手续丢了怎么办
- 佛手托金怎么养 下面教你几招