圆周率的由来,圆周率的由来简短?

圆周率的由来简短圆周率等于圆的周长除以圆直径得来的 。

圆周率的由来,圆周率的由来简短?

文章插图
圆周率的由来及意义1.祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".
2.后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一.
3.直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形,求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.
4.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与
5.1415927之间.并得出了π分数形式的近似值,取22/7为约率,取355/133为密率,其中355/133取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数
6.圆周率是精确计算圆周长、圆面积、球体积等几何形状的关键值 。
7.圆周率用希腊字母 π(读作pài)表示,是一个常数(约等于3.141592654),是代表圆周长和直径的比值 。它是一个无理数,即无限不循环小数 。
8.在日常生活中,通常都用3.14代表圆周率去进行近似计算 。而用十位小数3.141592654便足以应付一般计算 。即使是工程师或物理学家要进行较精密的计算,充其量也只需取值至小数点后几百个位 。
圆周率的由来,圆周率的由来简短?

文章插图
圆周率的来源故事简单说明最早计算出圆周率的人是祖冲之 。祖冲之算出圆周率(π)的真值在3.1415926和3.1415927之间,相当于精确到小数第7位,简化成3.1415926 。
一块古巴比伦石匾(约产于公元前1900年至1600年)清楚地记载了圆周率 = 25/8 = 3.125 。
【圆周率的由来,圆周率的由来简短?】同一时期的古埃及文物,莱因德数学纸草书(Rhind Mathematical Papyrus)也表明圆周率等于分数16/9的平方,约等于3.1605 。
埃及人在更早的时候就知道圆周率了 。英国作家 John Taylor (1781–1864) 在其名著《金字塔》中指出,造于公元前2500年左右的胡夫金字塔和圆周率有关 。
公元前3世纪,古希腊数学家阿基米德研究中发现:当一个正多边形的边数增加时,它的形状就越来越接近圆 。这一发现提供了计算圆周率的新途径 。阿基米德集用圆内接正多边形和圆外切正多边形两个方向上同时逐步逼近圆,经过不懈的努力,获得了圆周率的值介于223/71和22/7之间的结论 。
圆周率的历史,50字就好,最少35字求,快1500多年前,南北朝时期的祖冲之计算出圆周率π的值在3.1415926和3.1415927之间,并且得出了两个用分数表示的近似值:约率为22/7,密率为355/113 。
周长的由来的故事南北朝的时候,祖冲之为了计算圆周率,他在自己书房的地面画了一个直径1丈的大圆,从这个圆的内接正六边形一直作到12288边形,然后一个一个算出这些多边形的周长.那时候的数学计算,不是用现在的阿拉伯数字,而是用竹片作的筹码计算.他夜以继日、成年累月,终于算出了圆的内接正24576边形的周长等于3丈1尺4寸1分5厘9毫2丝6忽,还有余.因而得出圆周率π的值就在3.1415926与3.1415927之间,准确到小数点后7位,创造了当时世界上的最高水平 。
圆周率是怎么来的-圆周率“π”的由来
很早以前,人们看出,圆的周长和直经的比是个与圆的大小无关的常数,并称之为圆周率.1600年,英国威廉.奥托兰特首先使用π表示圆周率,因为π是希腊之"圆周"的第一个字母,而δ是"直径"的第一个字母,当δ=1时,圆周率为π.1706年英国的琼斯首先使用π.1737年欧拉在其著作中使用π.后来被数学家广泛接受,一直没用至今.
π是一个非常重要的常数.一位德国数学家评论道:"历史上一个国家所算得的圆周率的准确程度,可以做为衡量这个这家当时数学发展水平的重要标志."古今中外很多数学家都孜孜不倦地寻求过π值的计算方法.
公元前200年间古希腊数学家阿基米德首先从理论上给出π值的正确求法.他用圆外切与内接多边形的周长从大、小两个方向上同时逐步逼近圆的周长,巧妙地求得π
会元前150年左右,另一位古希腊数学家托勒密用弦表法(以1的圆心角所对弦长乘以360再除以圆的直径)给出了π的近似值3.1416.
公元200年间,我国数学家刘徽提供了求圆周率的科学方法----割圆术,体现了极限观点.刘徽与阿基米德的方法有所不同,他只取"内接"不取"外切".利用圆面积不等式推出结果,起到了事半功倍的效果.而后,祖冲之在圆周率的计算上取得了世界领先地位,求得"约率"和"密率"(又称祖率)得到3.1415926

推荐阅读