(2)两个平面的位置关系:
两个平面平行-----没有公共点;两个平面相交-----有一条公共直线 。
a、平行
两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行 。
两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么交线平行 。
b、相交
二面角
(1)半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面 。
(2)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角 。二面角的取值范围为[0°,180°]
(3)二面角的棱:这一条直线叫做二面角的棱 。
(4)二面角的面:这两个半平面叫做二面角的面 。
(5)二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角 。
(6)直二面角:平面角是直角的二面角叫做直二面角 。
esp.两平面垂直
两平面垂直的定义:两平面相交,如果所成的角是直二面角,就说这两个平面互相垂直 。记为⊥
两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直
两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于交线的直线垂直于另一个平面 。
人教版高一数学知识点5
空间两条直线只有三种位置关系:平行、相交、异面
1、按是否共面可分为两类:
(1)共面:平行、相交
(2)异面:
异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交 。
异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线 。
两异面直线所成的角:范围为(0°,90°)esp.空间向量法
两异面直线间距离:公垂线段(有且只有一条)esp.空间向量法
2、若从有无公共点的角度看可分为两类:
(1)有且仅有一个公共点——相交直线;(2)没有公共点——平行或异面
直线和平面的位置关系:
直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行
①直线在平面内——有无数个公共点
②直线和平面相交——有且只有一个公共点
直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角 。
空间向量法(找平面的法向量)
规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面内,所成的角为0°角
由此得直线和平面所成角的取值范围为[0°,90°]
最小角定理:斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角
三垂线定理及逆定理:如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直
推荐阅读
- 高一数学必修一重点知识笔记 高一数学必修三知识重点解读
- 高中必修一数学课本电子版 高中必修一数学教案
- 高一数学第一章知识点总结 高一数学知识点高考考点总结
- 人教版高一数学下册知识点总结 高一数学下册知识点总结
- 高一下册数学第十章知识总结 高一下册数学章节知识重点解读
- 高一数学人教版知识点和考点 高一数学知识点内容高考考点总结
- 高一数学数列的知识点整理 高一数学详细的知识点整理分享
- 高一数学知识点梳理大全 高一数学内容知识点梳理
- 人教版高一数学知识点整理 高一数学知识点整理考点分析
- 高一年级数学知识难点解读