抛物线|很多人学不好数学,基本上因为此类题型,你会了吗?( 二 )


(3)如图1,D为y轴的负半轴上的一点,且OD=2,以OD为边作正方形ODEF.将正方形ODEF以每秒1个单位的速度沿x轴的正方向移动,在运动过程中,设正方形ODEF与△OBC重叠部分的面积为s,运动的时间为t秒(0<t≤2).
求:①s与t之间的函数关系式;
②在运动过程中,s是否存在最大值?如果存在,直接写出这个最大值;如果不存在,请说明理由.
(4)如图2,点P(1,k)在直线BC上,点M在x轴上,点N在抛物线上,是否存在以A、M、N、P为顶点的平行四边形?若存在,请直接写出M点坐标;若不存在,请说明理由.
抛物线|很多人学不好数学,基本上因为此类题型,你会了吗?
文章插图

抛物线|很多人学不好数学,基本上因为此类题型,你会了吗?
文章插图
考点分析:
二次函数综合题,待定系数法,曲线上点的坐标与方程的关系,正方形的性质,二次函数的性质,平行四边形的判定。
题干分析:
(1)求出点C的坐标,即可根据A,C的坐标用待定系数法求出抛物线的函数表达式。
(2)求出点B的坐标(3,0),即可由待定系数法求出直线BC的函数表达式。
(3)①分0<t≤1和1<t≤2讨论即可。
(4)由点P(1,k)在直线BC上,可得k=-2。∴P(1,-2)。
则过点P且平行于x轴的直线N1N2和在x轴上方与x轴的距离为2的直线N3N4,与y=x2-2x-3的交点N1、N2、N3、N4。
抛物线|很多人学不好数学,基本上因为此类题型,你会了吗?
文章插图
动点有关的典型例题分析,讲解3:
如图,已知抛物线y=ax2+bx+3经过点B(-1,0)、C(3,0),交y轴于点A,将线段OB绕点O顺时针旋转90°,点B的对应点为点M,过点A的直线与x轴交于点D(4,0).直角梯形EFGH的上底EF与线段CD重合,∠FEH=90°,EF∥HG,EF=EH=1。直角梯形EFGH从点D开始,沿射线DA方向匀速运动,运动的速度为1个长度单位/秒,在运动过程中腰FG与直线AD始终重合,设运动时间为t秒。
(1)求此抛物线的解析式;
(2)当t为何值时,以M、O、H、E为顶点的四边形是特殊的平行四边形;
(3)作点A关于抛物线对称轴的对称点A′,直线HG与对称轴交于点K,当t为何值时,以A、A′、G、K为顶点的四边形为平行四边形。请直接写出符合条件的t值。
抛物线|很多人学不好数学,基本上因为此类题型,你会了吗?
文章插图

抛物线|很多人学不好数学,基本上因为此类题型,你会了吗?
文章插图
考点分析:
二次函数综合题,二次函数的性质,待定系数法,曲线上点的坐标与方程的关系,直角梯形的性质,平移的性质,相似三角形的判定和性质,平行四边形、矩形和菱形的判定。
题干分析:
(1)用待定系数法,将B(-1,0)、C(3,0)代入y=ax2+bx+3即可求得抛物线的解析式。
(2)当直角梯形EFGH运动到E′F′G′H′时,过点F′作F′N⊥x轴于点N,延长E′H’交x轴于点P。根据相似三角形的判定和性质,可用t表示出OP和H′P。分平行四边形E′H′OM是矩形和菱形两种情况讨论即可。
点在运动变化过程中与图形相关的某些量(如角度、线段、周长、面积及相关的关系)的变化或其中存在的函数关系。
解题策略:对于图形运动型试题,要注意用运动与变化的眼光去观察和研究图形,把握图形运动与变化的全过程,抓住其中的等量关系和变量关系,并特别关注一些不变的量,不变的关系或特殊关系,善于化动为静,由特殊情形(特殊点、特殊值、特殊位置、特殊图形等)逐步过渡到一般情形,综合运用各种相关知识及数形结合,分类讨论,转化等数学思想加以解决。

推荐阅读