拉格朗日函数是什么,在微观经济学中怎么应用?( 四 )


常微分方程组的研究在当时结合天体力学中的课题进行.拉格朗日在1772年完成的"论三体问题"(Essai sur le problémedes trois corps)[8]中,找出了三体运动的常微分方程组的五个特解:三个是三体共线情况两个是三体保持等边三角形在天体力学中称为拉格朗日平动解.他同拉普拉斯一起完善的任意常数变异法,对多体问题方程组的近似解有重大作用,促进了摄动理论的建立.
拉格朗日是一阶偏微分方程理论的建立者,他在1772年完成的."关于一阶偏微分方程的积分"(Sur l'integration des équationau differences partielles du premier order)[21]和1785年完成的"一阶线性偏微分方程的一般积分方法"(Méthode génèrale pourintégrer les equations partielles du premier order lorsque cesdifferences ne sont que linèaires)[23]中,系统地完成了一阶偏微分方程的理论和解法.
他首先提出了一阶非线性偏微分方程的解分类为完全解,奇解,通积分等,并给出它们之间的关系.还对形如
的非线性方程,化为解线性方程
后来又进一步证明了解线性方程
Pp+Qq=R(P,Q,R为x,y,z的函数)(5)
与解
等价,而解(6)式又与解常微分方程组
等价.(5)式至今仍称为拉格朗日方程.有趣的是,由上面已可看出,一阶非线性偏微分方程,可以化为解常微分方程组.但拉格朗日自己却不明确,他在1785年解一个特殊的一阶偏微分方程时,还说不能用这种方法,可能他忘记了自已在1772年的结果.现代也有时称此方法为拉格朗日方法,又称为柯西(Cauchy)的特征方法.因拉格朗日只讨论两个自变量情况,在推广到n个自变量时遇到困难,而后来由柯西在1819年克服.
3.方程论.18世纪的代数学从属于分析,方程论是其中的活跃领域.拉格朗日在柏林的前十年,大量时间花在代数方程和超越方程的解法上.
他在代数方程解法中有历史性贡献.在长篇论文"关于方程的代数解法的思考" (Réflexions sur le resolution algébrique desequations,《全集》Ⅲ, pp 205—421)中,把前人解三,四次代数方程的各种解法,总结为一套标准方法,而且还分析出一般三,四次方程能用代数方法解出的原因.三次方程有一个二次辅助方程,其解为三次方程根的函数,在根的置换下只有两个值四次方程的辅助方程的解则在根的置换下只有三个不同值,因而辅助方程为三次方程.拉格朗日称辅助方程的解为原方程根的预解函数(是有理函数).他继续寻找5次方程的预解函数,希望这个函数是低于5次的方程的解,但没有成功.尽管如此,拉格朗日的想法已蕴含着置换群概念,而且使预解(有理)函数值不变的置换构成子群,子群的阶是原置换群阶的因子.因而拉格朗日是群论的先驱.他的思想为后来的N.H.阿贝尔(Abel)和 E.伽罗瓦(Galois)采用并发展,终于解决了高于四次的一般方程为何不能用代数方法求解的问题.
拉格朗日在1770年还提出一种超越方程的级数解法.设p为方程
这就是后来在天体力学中常用的拉格朗日级数.他自己没有讨论收敛性,后来由柯西求出此级数的收敛范围.
4.数论.拉格朗日到柏林初期就开始研究数论,第一篇论文"二阶不定问题的解"(Sur la solution des problémès in détèrminésdu seconde degrés[14]和送交都灵《论丛》的"一个算术问题的解"(Solution d'un problème d'arithmetique)[15]中,讨论了欧拉多年从事的费马(Fermat)方程
x2-Ay2=1(x,y,A为整数),(9)
不定问题解的新方法"(Nouvelle méthode pour resoudveles problèmes indéteminés en nombres entiers)[16]中得到更一般的费马方程
x2-Ay2=B(B也为整数)(10)
的解.还讨论了更广泛的二元二次整系数方程
ax2+2bxy+cy2+2dx+2ey+f=0,(11)
并解决了整数解问题.
拉格朗日还在1772年的"一个算术定理的证明"(De monstration d'un théorème d'arthmétique,《文集》Ⅲ,pp.189—201)中,把欧泣40多年没有解决的费马另一猜想"一个正整数能表示为最多四个平方数的和"证明出来.在1773年发表的"质数的一个新定理的证明"(Démonstation d'un theorem nouveau concernant les nombres premiers)[17]中,证明了著名的定理:n是质数的充要条件为(n-1)!+1能被n整除.
拉格朗日不仅有大量成果,还在方法上有创新.如在证明(9)式
研究"(Recherches d'arithmétiques,《文集》Ⅲ,pp.695—795)中,研究(11)式解时采用的方法和结果,是二次型理论的基本文献.
5.函数和无穷级数.同18世纪的其他数学家一样,拉格朗日也认为函数可以展开为无穷级数,而无穷级数则是多项式的推广.他还试图用代数建立微积分的基础.在他的《解析函数论……》(《文集》Ⅸ)中,书名上加的小标题"含有微分学的主要定理,不用无穷小,或正在消失的量,或极限与流数等概念,而归结为代数分析艺术",表明了他的观点.由于迥避了极限和级数收敛性问题,当然就不可能建立真正的级数理论和函数论,但是他们的一些处理方法和结果仍然有用,他们的观点也在发展.

推荐阅读