作为一无名无私奉献的教育工作者,常常要根据教学需要编写教案,教案有助于学生理解并掌握系统的知识 。下面是小编为你准备的职高高一数学集合教案,快来借鉴一下并自己写一篇与我们分享吧!
职高高一数学集合教案篇1
一、教学内容:椭圆的方程
要求:理解椭圆的标准方程和几何性质.
重点:椭圆的方程与几何性质.
难点:椭圆的方程与几何性质.
二、点:
1、椭圆的定义、标准方程、图形和性质
定 义
第一定义:平面内与两个定点 )的点的轨迹叫作椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距
第二定义:
平面内到动点距离与到定直线距离的比是常数e.(0
标准方程
焦点在x轴上
焦点在y轴上
图 形
焦点在x轴上
焦点在y轴上
性 质
焦点在x轴上
范 围:
对称性: 轴、 轴、原点.
顶点:,.
离心率:e
概念:椭圆焦距与长轴长之比
定义式:
范围:
2、椭圆中a,b,c,e的关系是:(1)定义:r1+r2=2a
(2)余弦定理: + -2r1r2cos(3)面积: = r1r2 sin ?2c y0 (其中P( )
三、基础训练:
1、椭圆 的标准方程为,焦点坐标是,长轴长为___2____,短轴长为2、椭圆 的值是__3或5__;
3、两个焦点的坐标分别为 ___;
4、已知椭圆 上一点P到椭圆一个焦点 的距离是7,则点P到另一个焦点5、设F是椭圆的一个焦点,B1B是短轴,,则椭圆的离心率为6、方程 =10,化简的结果是 ;
满足方程7、若椭圆短轴上的两个三等分点与两个焦点构成一个正方形,则椭圆的离心率为
8、直线y=kx-2与焦点在x轴上的椭圆9、在平面直角坐标系 顶点,顶点 在椭圆 上,则10、已知点F是椭圆 的右焦点,点A(4,1)是椭圆内的一点,点P(x,y)(x≥0)是椭圆上的一个动点,则 的最大值是 8 .
【典型例题】
例1、(1)已知椭圆的中心在原点,焦点在坐标轴上,长轴长是短轴长的3倍,短轴长为4,求椭圆的方程.
解:设方程为 .
所求方程为
(2)中心在原点,焦点在x轴上,右焦点到短轴端点的距离为2,到右顶点的距离为1,求椭圆的方程.
解:设方程为 .
所求方程为(3)已知三点P,(5,2),F1 (-6,0),F2 (6,0).设点P,F1,F2关于直线y=x的对称点分别为,求以 为焦点且过点 的椭圆方程 .
解:(1)由题意可设所求椭圆的标准方程为 ∴所以所求椭圆的标准方程为(4)求经过点M(,1)的椭圆的标准方程.
解:设方程为
例2、如图所示,我国发射的第一颗人造地球卫星运行轨道是以地心(地球的中心) 为一个焦点的椭圆,已知它的近地点A(离地面最近的点)距地面439km,远地点B(离地面最远的点)距地面2384km,并且 、A、B在同一直线上,设地球半径约为6371km,求卫星运行的轨道方程 (精确到1km).
解:建立如图所示直角坐标系,使点A、B、 在 轴上,
则 =OA-O = A=6371+439=6810
解得 =7782.5,=972.5
卫星运行的轨道方程为
例3、已知定圆
分析:由两圆内切,圆心距等于半径之差的绝对值 根据图形,用符号表示此结论:
上式可以变形为,又因为,所以圆心M的轨迹是以P,Q为焦点的椭圆
解:知圆可化为:圆心Q(3,0),
设动圆圆心为,则 为半径 又圆M和圆Q内切,所以,
即,故M的轨迹是以P,Q为焦点的椭圆,且PQ中点为原点,所以,故动圆圆心M的轨迹方程是:
例4、已知椭圆的焦点是 |和|(1)求椭圆的方程;
(2)若点P在第三象限,且∠ =120°,求 .
选题意图:综合考查数列与椭圆标准方程的基础知识,灵活运用等比定理进行解题.
解:(1)由题设| |=2| |=4
∴,2c=2,∴b=∴椭圆的方程为 .
(2)设∠,则∠ =60°-θ
由正弦定理得:
由等比定理得:
整理得: 故
说明:曲线上的点与焦点连线构成的三角形称曲线三角形,与曲线三角形有关的问题常常借助正(余)弦定理,借助比例性质进行处理.对于第二问还可用后面的几何性质,借助焦半径公式余弦定理把P点横坐标先求出来,再去解三角形作答
例5、如图,已知一个圆的圆心为坐标原点,半径为2,从这个圆上任意一点P向 轴作垂线段PP?@,求线段PP?@的中点M的轨迹(若M分 PP?@之比为,求点M的轨迹)
解:(1)当M是线段PP?@的中点时,设动点,则 的坐标为
推荐阅读
- 人教版三年级上册数学教案 数学教案三年级上册例文
- 2021年小学三年级数学上册教学计划 2021小学三年级数学上教案
- 人教版小学三年级数学下册教案 新人教版小学三年级数学上册教案模板
- 人教版三年级上册数学教学设计 三年级上册数学教学设计
- 高中数学一轮知识点总结 高中数学一轮复习
- 小学三年级数学微型课教案 三年级数学微型课教案例文
- 高中数学必修有哪些知识点 人教版高中数学有哪些知识点
- 常考高三数学知识点归纳总结
- 高三数学重点知识点总结 高三数学知识重点总结分享
- 高三数学知识点最全整理 最新高三数学复习知识点整理分享