高一数学集合的概念教案 职高高一数学集合教案( 八 )


设计意图:通过作业1、2进一步巩固本节课所学的增、减函数的概念,强化基本技能训练和解题规范化的训练,并且以此作为学生对本结内容各项目标落实的评价 。新课标要求:不同的学生学习不同的数学,在数学上获得不同的发展 。作业3这种新型的作业形式是其很好的体现 。
(七)板书设计(见ppt)
五、评价分析
有效的概念教学是建立在学生已有知识结构基础上,,因此在教学设计过程中注意了:第一 。教要按照学的法子来教;第二在学生已有知识结构和新概念间寻找“最近发展区”;第三 。强化了重探究、重交流、重过程的课改理念 。让学生经历“创设情境——探究概念——注重反思——拓展应用——归纳总结”的活动过程,体验了参与数学知识的发生、发展过程,培养“用数学”的意识和能力,成为积极主动的建构者 。
本节课围绕教学重点,针对教学目标,以多媒体技术为依托,展现知识的发生和形成过程,使学生始终处于问题探索研究状态之中,_引趣,并注重数学科学研究方法的学习,是顺应新课改要求的,是研究性教学的一次有益尝试 。
职高高一数学集合教案篇5
教学目标:
(1) 了解集合、元素的概念,体会集合中元素的三个特征;
(2) 理解元素与集合的"属于"和"不属于"关系;
(3) 掌握常用数集及其记法;
教学重点:掌握集合的基本概念;
教学难点:元素与集合的关系;
教学过程:
一、引入课题
军训前学校通知:8月15日8点,高一年级在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?
在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念--集合(宣布课题),即是一些研究对象的总体 。
阅读课本P2-P3内容
二、新课教学
(一)集合的有关概念
1、 集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体 。
2、 一般地,我们把研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集 。
3、 思考1:判断以下元素的全体是否组成集合,并说明理由:
(1) 大于3小于11的偶数;
(2) 我国的小河流;
(3) 非负奇数;
(4) 方程的解;
(5) 某校2007级新生;
(6) 血压很高的人;
(7) 著名的数学家;
(8) 平面直角坐标系内所有第三象限的点
(9) 全班成绩好的学生 。
对学生的解答予以讨论、点评,进而讲解下面的问题 。
4、 关于集合的元素的特征
(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立 。
(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素 。
(3)无序性:给定一个集合与集合里面元素的顺序无关 。
(4)集合相等:构成两个集合的元素完全一样 。
5、 元素与集合的关系;
(1)如果a是集合A的元素,就说a属于(belong to)A,记作:a∈A
(2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作:aA
例如,我们A表示"1~20以内的所有质数"组成的集合,则有3∈A
4A,等等 。
6、集合与元素的字母表示: 集合通常用大写的拉丁字母A,B,C. 。.表示,集合的元素用小写的拉丁字母a,b,c, 。. 。表示 。
7、常用的数集及记法:
非负整数集(或自然数集),记作N;
正整数集,记作N或N+;
整数集,记作Z;
有理数集,记作Q;
实数集,记作R;
(二)例题讲解:
例1.用"∈"或""符号填空:
(1)8 N; (2)0 N;
(3)-3 Z; (4) Q;
(5)设A为所有亚洲国家组成的集合,则中国 A,美国 A,印度 A,英国 A 。
例2.已知集合P的元素为,若3∈P且-1P,求实数m的值 。
(三)课堂练习:
【高一数学集合的概念教案 职高高一数学集合教案】课本P5练习1;
归纳小结:
本节课从实例入手,非常自然贴切地引出集合与集合的概念,并且结合实例对集合的概念作了说明,然后介绍了常用集合及其记法 。
作业布置:
1、习题1.1,第1- 2题;

推荐阅读